
CS-208:Artificial Intelligence
Topic-17: Resolution in Predicate Logic



Resolution in Predicate Logic
In propositional logic, it is easy to determine that two literals can not be true at the same 

time. But in predicate logic it is not easy as the arguments are also need to be considered

Man(Marcus) and Man(Marcus) is a contradiction

Man(Marcus) and Man(Spot) is not a contradiction

So we need a matching process that compares  two literals and discover whether there exist 
a set of substitution that matches them identical. 

Basic idea of Unification

 Different constant or predicate can not match

✓ Identical constant or predicate  can match

✓ A variable can match with

 Another variable

 Any constant

 predicate expression (except that it should not contain any 
instance of the variable being matched).



Complication in finding the consistent substitutions
Finding the consistent substitution is very complex process:

Wrong way of finding the substitutions:

P(x, x) y/x P(y, x) z/x P(y, z)

P(y, z) P(y, z) P(y, z)

 y/x and z/x can not be the correct substitutions because two different variables y
and z can not be substituted for a same single variable x.

Right way of finding the substitution:

Find the first substation and apply to the rest of the arguments and the find other 
substitution in the similar way

P(x, x) y/x P(y, y) z/y P(y, z)

P(y, z) P(y, z) P(y, z)



Objective of the Unification Procedure

The objective is to find at least one substitution that causes two literals to match.

Example:

Hate(x, y)

Hate(Marcus, y)

Two sets of substitutions that can match these two literals:

✓ Marcus/ x, z/y

✓ Marcus/x, y/z



Unification Algorithm
Unify(L1,L2)

// unifies two literals L1 and L2

1. If L1 or L2 is a variable or constant, then:
a) If L1 and L2 are identical, then return NIL. 
b) Else if L1 is a variable, then if L1 occurs in L2 then return FAIL, else return {(L2/ L1 }.
c) Else if L2 is a variable, then if L2 occurs in L1 then return FAIL, else return {(L1 /L2)}.
d) Else return FAIL.

2.     If the initial predicate symbols in L1 and L2 are not identical, then return FAIL.

3.     If L1 and L2 have a different number of arguments, then return FAIL

4.   Set SUBST to NIL.

5.    For i 1 to number of arguments in L1 do
a) Call Unify with the ith argument of L1 and the ith argument of L2, putting result in S.
b) If S = FAIL then return FAIL.
c) If S  NIL then:

i. Apply S to the remainder of  both L1 and L2.
ii. SUBST := APPEND(S, SUBST).

6.     Return SUBST.



 At the end of the procedure SUBST will contain all substitutions used to unify L1 and L2.

 If SUBST is an empty list then it indicates that match was found without any substitution.

 If SUBST contains a single value Fail then it indicates that unification procedure has failed.



Resolution Procedure in Predicate Logic 
Step1: Convert all the propositions (axioms)  of F to clause form.

Step2: Negate S and convert the result to clause form.  Add it to the set of clauses obtained in 
Step1.

Step3: Repeat until either a contradiction is found, no progress can be made, or a
predetermined amount of effort has been expended.

a. Select two clauses.  Call these the parent clauses.

b. Resolve them together. The resolvent will be the disjunction of all the literals of
both parent clauses with appropriate substitutions performed and with the
following exception: If there is one pair of literals T1 and ¬T2 such that one of the
parent clauses contains T1 and the other contains ¬T2 and if T1 and T2 are
unifiable, then neither T1 nor ¬ T2 should appear in the resolvent. If there is more
than one pair of complementary literals, only one pair should be omitted from the
resolvent.

c. If the resolvent is the empty clause, then a contradiction has been found. If it is
not, then add it to the set of clauses available to the procedure.



An illustrative Example for Proving that Marcus hated Caesar using Resolution

.   

English Sentence
(Given set of axioms)

Predicate WFF

1)Marcus was a man Man(Marcus)

2)Marcus was a Pompeian Pompeian(Marcus)

3)All Pompeian were Romans x: Pompeian(x)→ Roman(x)

4)Caesar was a ruler Ruler(Caesar)

5) All Romans were either loyal to Caesar or hate him x:{Roman(x)→[(loyalto(x,Caesar)  hate(x,Caesar))(loyalto(x,Caesar)hate(x,Caesar))]}

6)Everyone is loyal to someone x: :y loyalto(x,y)

7) Men only try to assassinate ruler they are not loyal to x:y:Man(x)  Ruler(y)  trytoassassinate(x,y) →loyalto(x,y)

8) Marcus tried to assassinate Caesar trytoassassinate(Marcus, Caesar)



Resolution Step-1

.   

Predicate WFF Clauses Form

Man(Marcus) Man(Marcus) Clause-1

Pompeian(Marcus) Pompeian(Marcus) Clause-2

x: Pompeian(x)→ Roman(x)  Pompeian(x1)Roman(x1) Clause-3

Ruler(Caesar) Ruler(Caesar) Clause-4

x:{Roman(x)→[(loyalto(x, Caesar)hate(x, 
Caesar))(loyalto(x, Caesar)hate(x, Caesar))]}

Roman(x2)  loyalto(x2, Caesar)  hate(x2, Caesar) Clause-5a

Roman(x3)  loyalto(x3, Caesar)  hate(x3, Caesar) Clause-5b

x: :y loyalto(x,y) loyalto(x4, S1(x4)) Clause-6

x:y:Man(x)  Ruler(y)  trytoassassinate(x,y) →loyalto(x,y) Man(x5)  Ruler(y)  trytoassassinate(x5, y)  loyalto (x5, y) Clause-7

trytoassassinate(Marcus, Caesar) trytoassassinate(Marcus, Caesar) Clause-8



Resolution Proof for  Marcus hated Caesar

Statement to be
Proved

WFF Negate the WFF Clause Form

Marcus hated Caesar hate(Marcus, Caesar) hate(Marcus, Caesar) hate(Marcus, Caesar) Clause-9



Resolution Proof

hate(Marcus, Caesar)

Roman(Marcus) loyalto(Marcus,Caesar)

Marcus/x2

Clause-5a

Clause-3

Clause-2

Clause-7

Clause-1

Clause-4

Clause-8

Marcus/x1

Pompeian(Marcus)loyalto(Marcus,Caesar)

loyalto(Marcus,Caesar)

Marcus/x5, Caesar/y

Man(Marcus)  Ruler(Caesar) trytoassassinate(Marcus, Caesar)

 Ruler(Caesar)trytoassassinate(Marcus, Caesar)

trytoassassinate(Marcus, Caesar)



Question Answering using Resolution
It was shown that resolution can be used to answer yes-no questions. 

It can also be shown that the resolution can be used to answer fill-in-the-blank
questions. This can be done by adding an additional expression to the one which is
used to try to find a contradiction. This new additional expression (dummy expression)
will simply the one that is to be proved true (it will be the negation of the expression
that is actually used in the resolution).

This dummy expression will not interfere with the resolution process and it is
tagged or underlined to indicate that it is a dummy expression. It will carry along the
resolution and each time the unification is done, the variables in the dummy
expression is also be bound just as the ones in the clause that are actively being used.

Instead of terminating on reaching the nil expression, the resolution will terminate
when it will only left with the dummy expression. At this point, the bindings of
variables in the dummy expression will provide the answer.



An illustrative example for answering fill-in-the-blank 
questions by using resolution

When did Marcus die?

To find answer WFF Negate Adding the dummy Clause Beginning parent Clause

When did Marcus die? died(Marcus, t) died(Marcus, t) died(Marcus, t) died(Marcus, t) died(Marcus, t) died(Marcus, t)



Translating the Sentences into Formulas in Predicate Logic.

English Sentence
Given set of axioms

WFF

Marcus was a man Man(Marcus)

Marcus was a Pompeian Pompeian(Marcus)

All Pompeian died when the volcano erupted in 79AD erupted(volcano, 79)x:Pompeian(x)→ died(x, 79)



Convert the Formulas into Clause Form

WFF Clause Form

Man(Marcus) Man(Marcus) Clause-1

Pompeian(Marcus) Pompeian(Marcus) Clause-2

erupted(volcano, 79)x:Pompeian(x)→ died(x, 79)
erupted(volcano, 79) Clause-3

Pompeian(x) died(x, 79) Clause-4



Comparative example for answering yes-no & fill-in-the-
blank question by using Resolution

Answering yes-no question using resolution

died(Marcus, t)

Answer: Marcus died is true

died(Marcus, t)

Answer: Marcus died in 79 AD

Pompeian(x)died(x, 79) died(Marcus, t)

Pompeian(Marcus)Pompeian(Marcus)

Nil

Pompeian(x)died(x, 79) died(Marcus, t)died(Marcus, t)

Pompeian(Marcus) died(Marcus, 79)Pompeian(Marcus)

died(Marcus, 79)

Answering fill-in-the-blank question using resolution

Marcus/x, 79/t
Marcus/x, 79/t


